Subsea power grids require two major kinds of ocean equipment: subsea power cables to convey electricity to the grids, and generating equipment to distribute electricity to pumps and other devices required to find and extract crude oil.
Even in a time of depressed petroleum prices, oil companies still value deep ocean engineering and they like the prospect of placing power grids on the sea floor because the grids improve the efficiency of the extraction process, which helps hold the line on production costs. When the oil market inevitably rebounds, companies with the most efficient production processes will reap the greatest rewards.
Let’s look at some of the ocean hardware that will go into these subsea systems:
- Transformers: These take power from the surface — either from the mainland or a floating platform — and convert it into the voltage needed at the undersea grid level.
- Switch gear: Switches adjust the flow of electricity to the deep-sea components that need it. If a pump needs different voltage than a compressor, switch gear takes care of that job.
- Variable-speed drives: An oil-drilling pump needs to run at multiple speeds to achieve maximum efficiency. VSBs make this happen.
- Cables: Cables carry energy from the surface to the grid and distribute it to the transformers, switch gear, variable-speed drives and any other ocean hardware in the grid.
Why deep-sea power grids are so attractive
Oil drillers need a lot of power to extract oil from below the deep sea. A deep-sea power grid allows power to be distributed to dozens of pieces of subsea hardware across a wide expanse of the sea floor.
A site developing a deep-sea oilfield becomes much easier to operate if power sources are on the sea floor near the point of extraction. Without a grid, power can be sent down via cables to equipment within a very limited expanse. A grid dramatically expands the area of sea floor that has available power.
Challenges for deep-sea equipment
Companies are designing subsea grids that can operate for up to 30 years in up to 10,000 feet of water. That places immense pressure on the equipment and requires precise engineering to protect delicate electrical components.
Saltwater is extremely corrosive, and undersea creatures like to attach themselves to any structures they can find. Fishing fleets drag deep nets that can become entangled in deep-sea equipment, and ship anchors have the potential to damage or cut subsea power cables.
Robust ocean equipment is the answer
Subsea energy companies understand the extreme terrain and know they need to build robust gear to provide reliable systems that can last decades. That also means they need to rely on proven ocean hardware that is high quality, highly reliable and fully flexible.
Offshore renewable energy solutions might be new to the world, but we know that all ocean equipment requires deep ocean engineering experience. And for over 60 years, PMI Industries has provided ocean hardware that increases efficiency, reduces failures, and improves installation and deployment time.