The offshore wind industry made significant strides in Europe last year, according to the European Wind Energy Association (EWEA). This growth has broad implications both for the renewables industry and the subsea cable market.
EWEA’s “Wind in Power: 2015 European Statistics” report published in February 2016 said European offshore wind installations more than doubled in 2015 from the year before. Germany had by far the most wind-power activity in 2015, adding 6,013 megawatts of generating capacity — and 38.4% of that was offshore.
Offshore wind installations accounted for 33.4 percent of all installations in 2015, according to EWEA’s data, up from 13.7% year before. Furthermore, investments in wind power hit an all-time high in 2015, EWEA said, with offshore wind leading the charge.
“Financial commitments in new assets reached a total of €26.4 billion, a 40 percent increase from 2014,” the report said. “While investments in new onshore wind generating assets increased by 6.3% in 2015, those in the offshore wind sector doubled compared to the previous year.”
A summary of the report in the website OffshoreWIND.biz notes where most of the capacity was added in 2015:
- Germany: 2,282 megawatts (75.4%), a four-old jump from the year before
- UK: 566 MW (18.7%)
- Netherlands: 180 MW (5.9%)
Another EWEA report, “The European Offshore Wind Industry — Key Trends and Statistics 2015,” drills deep into the details of the continent’s offshore power industry. It notes that “total investments for the construction and refinancing of offshore wind farms and transmission assets hit a record level of €18 billion.”
At PMI, we’re watching the growth of offshore wind closely because it has the potential to affect all the players in the subsea cable market. After all, those wind turbines depend on offshore cables to transmit power back to the mainland (the average turbine site was 43.3 kilometers from shore in 2015, in 27.1 meters of water). As sites near shore become more fully developed, offshore sites will inevitably move farther away and into much deeper water.
Those developments mean offshore cables and equipment like subsea cable terminations will need to be extremely tough and reliable — the two signature qualities of PMI cable equipment.
Waves and tides offer some of the most predictable, consistent, and just generally big energy resources available. However, rollouts of actual wave and tidal energy power installations have been slow. Part of the reason for this is that there is no consensus at all on what represents the best device designs to actually harness waves and tides and therefore on what subsea equipment is necessary to use.
Any subsea equipment needed to harness tidal energy is going to be expensive – and will tend to drive building costs to be anywhere between 3 to 15 million dollars and sometimes more. But in the long run, the investment will pay off.
Now the pros and cons of tidal energy always bring debate – but tidal energy has a lot going for it:
Consistent Power – Tides move constantly throughout the day, which provides a consistent stream of electricity generation capacity.
Pollution-Free – By taking advantage of only the tide, tidal power creates no greenhouse gas emissions or water pollutants.
Renewable – No material resources are used or changed in the production of tidal power, making it a truly renewable power form.
Minimal Visual Impact – Tidal power devices are fully or nearly completely submerged in water well offshore. This reduces the “damaging of water views” that has been associated with offshore wind turbines.
Efficient – Tidal Power converts roughly 80% of the kinetic energy into electricity, as opposed to coal and oil which convert only 30% of the energy held within.
Locations – There are numerous locations for tidal power around the world. Other websites online have this number at 40, however the coast of British Columbia, Canada has 89 alone.
And most importantly it offers low operating costs – Once installed, there are few ongoing operating costs or labor costs. By making investments at the forefront and building these systems properly with reliable equipment, tidal energy power plants offer a long lifespan, ultimately reduce costs, and make tidal energy more cost-competitive in the long run.
Any young, new industry will have growing pains, and the offshore wind farm industry is no different. Among other issues with offshore wind farms, one of the biggest problems to affect the industry are issues with subsea cables. Failures and issues during installation and maintenance of subsea cables have cost companies millions of dollars and have caused many delays in this new and quickly rising industry.
While much information on cable issues is closely guarded, there have been some high profile cases as well as some studies done regarding damage to offshore wind farms. One of these studies, conducted by the Bureau of Safety and Environmental Enforcement (BSEE), partially delves into issues specific to subsea cables. Failure statistics have shown that third party mechanical damage to cables is three to five times more likely that the risk of internal cable failures. A few examples of third-party subsea cable damage include:
- Jackup “Jacked Up” On a Cable:
One issue is the risk of Jackups “Jacking Up” on a cable. A Jackup is a floating barge fitted with long support legs that can be raised or lowered to service oil and gas platforms or wind turbines. According to the study by the BSEE, there have been issues with cables getting caught in the jackup and being damaged in the equipment.
- Anchors Damage To Cable:
Another common issue is damage from third party anchors. Often times, anchors of laying vessels will tangle with the cable being laid and cause damage to the cable.
- Cable Kinked
Perhaps one of the most common issues with subsea cables is their tendency to kink or bend. It is very easy to get a kink into the line when preparing to install cables and unkinking is a major exercise requiring special skills.
In addition to these issues, other common problems to cable installation can include: damage to cable during installation, weather or soil-related damage, cable or joint failure, or sediment movement that can lead to cable exposure.
Subsea cables are complicated pieces of equipment and need to be handled with care and should only be used with only the best cable hardware to promote longevity and fortification. PMI is ready to equip your cables with the highest quality cable hardware.
For more information regarding subsea cable vulnerability, read our blog: Why the growing renewable energy market should be concerned about subsea cable vulnerability or call us today to schedule a meeting.
We’re excited for the coming year, and to share the enthusiasm and high expectations among industry leaders for steady growth in 2016. RenewableUK, a trade association for wind and marine energy, predicts a busy year ahead for the wind industry. We couldn’t agree more, with over 50 onshore wind projects, and an additional six offshore projects, scheduled to become fully operational in 2016 in the UK alone! That’s more than three times the capacity installed in the UK during 2015. And construction on another five offshore wind projects will begin there during 2016.
These projects will surely bring billions of pounds of investment to British companies across the supply chain and will support nearly 35,000 jobs.
As the wind industry grows, so do the risks. With rapid growth, the need for dependable offshore engineering solutions is imperative. Why? Because one small setback, like damaging a cable during installation, could put an entire wind farm out of service for months and lead to damage to turbine equipment, too. A study done by the Bureau of Safety and Environmental Enforcement on Offshore Electrical Cable Burial for Wind Farms estimates that 70% of insurance claims for offshore wind farms come from some kind of damage or breakage to the subsea cables.
And a subsea cable isn’t a quick fix either. A typical subsea cable repair equals several days for the ship to reach fault position. It’s 3-5 days once the ship is on site, and even longer if bad weather is involved.
PMI has years of experience in the offshore industries and continues to develop innovative hardware solutions for subsea cables.
To find out more about our subsea cable hardware equipment, schedule an appointment to talk to our experts today.
PMI Industries, Inc.’s location will be extremely beneficial for clients along the east coast in the next few years. As New York is mandating 50 percent renewable energy by 2030, offshore wind and renewable companies will find themselves very busy along the eastern shoreline.
One innovative way for these industries to save cost while they begin ramping up their energy solutions is to find ways to reduce shipping costs on their subsea equipment needs. They can do this by working with companies, like PMI, who are situated nearby and have years of experience in offshore cable management.
Meet with a PMI Engineering Expert who will help you tackle your offshore project needs today.
“The Governor has already shown his vision for a successful low-carbon energy economy in New York thorough the state’s path-breaking Reforming the Energy Vision initiative, and ACORE applauds his continued leadership with the proposed mandate for 50 percent renewables by 2030,” said Dan Reicher, Interim President and CEO of ACORE and Executive Director of the Steyer-Taylor Center for Energy Policy & Finance at Stanford University. “With the adoption of this mandate, New York would join an elite group of states reaching for 50 percent clean, renewable power that cuts carbon emissions and grows the economy.”
Read more about New York’s Energy Mandate here.
For decades, PMI has been extremely focused on building the best products that withstand the extreme environments of the deep ocean. But as we’ve come to work with Offshore Wind and Renewable Energy companies, we understand our product doesn’t have to be used in the deepest and harshest place on our planet, the sea. Instead, rivers in rural areas are a huge focus of the renewable energy field today. And these companies are offering solutions that serve a large portion of the population, who still have no access to electricity.
……………………………………………………………………………………………………………………
We see a great future in the power coursing through our rivers. And, of course, we will be providing cable equipment for these projects as they evolve. If you want to know more about our custom engineered cable hardware equipment, schedule to talk to our experts today.
……………………………………………………………………………………………………………………
India is facing an energy revolution. Despite broad grid coverage, electricity supply in remote areas remains unreliable. For the future, the government is setting a favorable political scenario by introducing solutions for decentralized electrification based on renewable energies, such as photovoltaic (PV), small wind, and explicitly kinetic hydropower.
Companies such as Smart Hydro Power have the advantage of realizing its systems in rural areas, without the requirement for any kind of infrastructure, suitable for running canals, rivers and streams, which inhabit a large portion of India’s typography. At the distribution part of this system, integrated load management introduces an auxiliary productive load – a water purification plant – that utilizes all excess energy and stabilizes the micro grid with variable operation. Through this feature, additional value is brought to the lifestyle of people residing in these communities. Read more…
The main ambition behind the development of the Smart Hydro Power turbine was cost efficiency. Selected materials had to be robust and yet affordable which resulted in a majority of HDPE, aluminum and stainless steel components. The turbine consists of a three bladed rotor, a 5 kW generator, the floating body consisting of a three piece diffusor and two floats.
Watch how it works here: http://www.smart-hydro.de/en/product/turbine.html
Drawing energy from river currents represents a massive untapped source of electricity development. This is especially true in countries like Canada, where rivers and coastal waters provide an enormous range of development options that can provide growth and economic benefits.
Indeed, Canada is emerging as a leader in the global marine renewable energy industry, thanks to supportive government policies, shared infrastructure and strategic research initiatives. These facts provided the backdrop for last week’s Marine Renewables Canada 2015 Annual Conference, where PMI was among the vendors showcasing products and services in the fast-growing renewables market.
At PMI, we’re already reaching out to companies in the offshore-wind sector, and we’re seeing the potential of freshwater rivers to provide clean, renewable energy.
River energy initiatives provide a new twist on age-old technology: the water wheel. New ventures in this sector are exploring placing turbines — much like you’d see on a jet aircraft — deep in the waters of a river. Water turns the blades, generating kinetic energy that can be converted into electricity.
This creates the potential to fix the one major drawback of hydroelectric projects: massive dams that devastate the local environment. Rivers also can provide power around the clock, unlike solar panels.
Canadian businesses and researchers are unlocking the potential of marine renewable energy through innovations and new approaches to key challenges in the lifecycle of wave, tidal and river projects. Solving problems here definitely opens opportunities in the global market.
PMI is proud to be on the cutting edge of this opportunity, supplying contractors with our proven subsea hardware equipment for river energy exploration. At Marine Renewables Canada 2015, we gobbled up knowledge on topics including:
- Technical acceptability — an international effort to reduce technical risk
- Building scale — an international project pipeline
- Supplying the industry — device development
We see a great future in the power coursing through our rivers. And, of course, we will be providing cable equipment for these projects as they evolve. If you want to know more about our custom engineered cable hardware equipment, schedule to talk to our experts today.
The Dutch Government will soon be inviting offshore wind power companies to bid on building two wind farms off the Dutch coast.
Companies bidding the lowest price will be awarded a 30-year permit to build and operate the relevant wind farm.
So it’s not a surprise to tell you that everyone will be extremely focused on cost control measures.
From our experience, it will be important for those involved to understand how proven subsea cable equipment can reduce the overall cost over time. And throwing the cheapest solution out to grab a bid could be a very costly problem in the future.
While our high-end, custom engineered subsea cable hardware may not be the cheapest on the market, our engineering team understands there are other ways to save costs. Our experience led us to create “No Tools Required” custom cable systems, and our in-depth hydrodynamic efficiency studies are helping other companies innovate new systems on existing subsea cable devices and analyze cost saving opportunities.
According to the Government, critical to the overall plan for The Netherlands is that the energy produced from renewable sources is cost-competitive. In meeting its future energy demand, the country aims to keep costs under control.
For most wind projects, the pre-construction and even pre-bid costs are high for individual companies. Costs must be made for site investigations, for environmental impact assessments, and so on. This increases risks for bidders, and by consequence the overall costs for offshore wind development. To address this, the Dutch government has now decided to take over the responsibility for many of these pre-development issues. Read more…
Offshore wind might be a new industry, but they are as just as focused on cost efficiencies and simplified solutions as our clients in oil and gas. Those who support them need to supply and produce reliable products that increase performance and lower costs.
Our past customers pushed us to innovate and develop “No Tools Required” custom cable systems, and our in-depth hydrodynamic efficiency studies are helping other companies innovate new systems on existing subsea cable devices and analyze cost saving opportunities.
And we are not alone in our efforts. German industrial group Siemens unveiled a new direct-current solution for connecting offshore wind turbines to the grid which can lower costs by as much as 30%. Read more.
When laying and retrieving submarine cables on the seabed, or performing a cable pull from a vessel to an offshore wind platform, it is often necessary to hold a cable end onboard for up to seven days.
Cables must be anchored firmly onboard to keep them in place, and this anchoring is normally done by means of a cable stopper.
The cable left hanging in the ocean can be exposed to forces so strong there is a distinct possibility of becoming overtensioned. Meanwhile, the vessel’s crew works to keep station by the use of thrusters. If overwhelmed by winds, strong currents and waves, the ship can be driven out of position. The cable left hanging may end up acting as an anchor chain, subject to additional forces and tension.
In these situations, when the wrong cable hardware is used, or is installed incorrectly, the grip of cable tensioners can slip. The heavy cable starts moving unfastened, which is extremely dangerous for the crew, equipment and the vessel.
While the oil, gas and seismic industries have had plenty of experience with these issues, the growing offshore renewable energy companies are looking to manufacturers like PMI Industries for proven experience and products to guide the way.
Engineers who have made the leap from offshore oil to offshore renewable energy have worked with PMI’s products, such as our CABLE-GRIP™ and STOPPER-GRIP™ Terminations, and have found them preferable to typical braided cable grips or cable socks. These terminations are quick and easy to install, robust, and recommended by many cable deck crews.
Our unique cable grips are fully capable of holding cables to the rated breaking strength. Tensile load is transferred gradually from cable to termination with no stress or damage to the cable. And unlike braided stoppers, the helical termination wire design permits installation anywhere along the length of the subsea cable, since it does not require access to the cable end.
7 Questions You Should Be Asking About Your Subsea Terminations
- 1
- 2